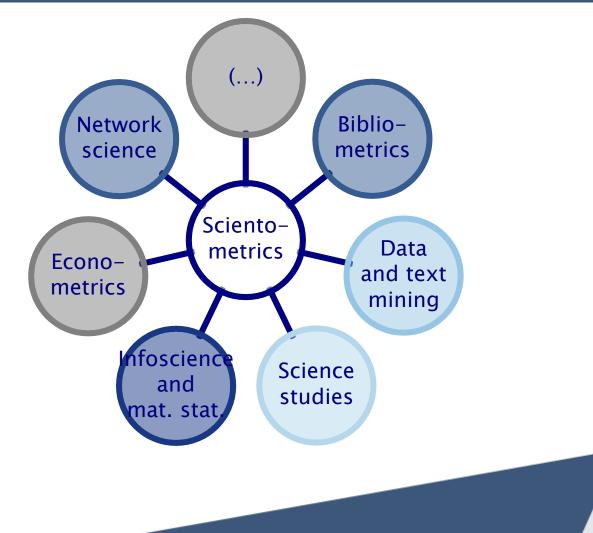


# **Beyond scientific impact**

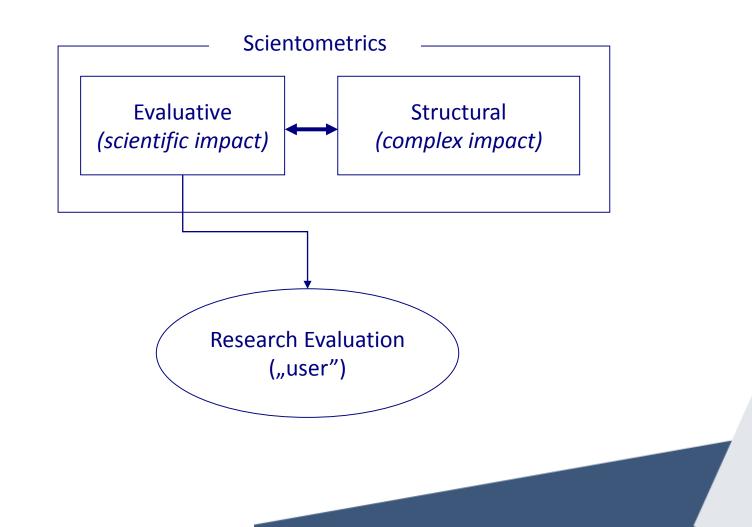
Evolving frameworks and novel methods in scientometrics

Sándor Soós, PhD soossand@konyvtar.mta.hu




### Scientometrics and research evaluation

- Three common misperceptions:
  - Scientometrics is publication statistics (science administration's view)
  - Scientometrics is exclusively concerned with the measurement of scientific performance (researcher's view)
  - Scientometrics is a form of research evaluation (policy maker's view)




### Scientometrics and research evaluation





### Scientometrics and research evaluation





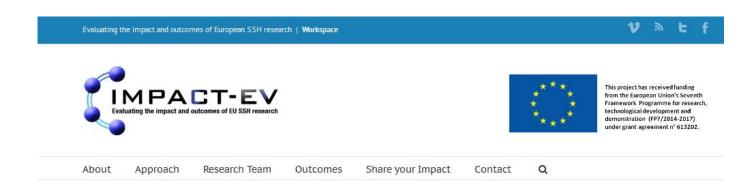
# Paradigm change?

"Is there currently a scientific revolution in scientometrics?"
 Lutz Bornmann, forthcoming in JASIST

"One of the key terms in scientometrics is **scientific impact** which nowadays is understood to mean not only the impact on science but the impact on every area of society"



### Running examples of addressing broad impact




📙 🚽 🖃

SISOB: An Observatorium for Science in Society based in Social Models



# Running examples of addressing broad impact









# Measuring "social" dimensions of scientific impact

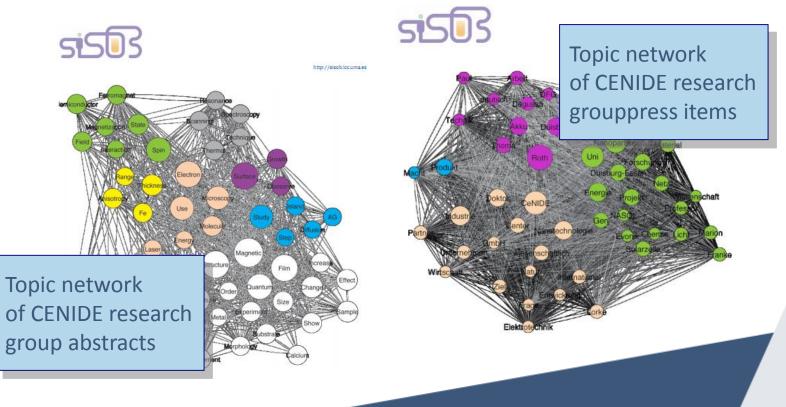
- Known unavioidable difficulties in evaluation practice:
  - Causality problem (scientific developments as causal factors)
  - Attribution problem (the role of knowledge production in "complex systems")
  - Time-scale problem (long-term vs. short-term outcomes)
     Ben Martin, SPRU



## Direct scientometric approach

- Impact: direct quantification of knowlege flows between withinscience and outside-science venues of societal importance
  - Patent references to publications (economic impact), patent citation network analysis
  - Collaboration of academic and private sector → InCites<sup>TM</sup>: % of industry co-authorship (economic impact)
  - Clinical guidelines based on medical research results (social impact: life quality)
  - Policy document and legislation referring to social science research and results (SSH impact on policy making) → IMPACT-EV baselines
  - Research affecting the public discourse, on-line social venues, Webometrics, ALTMETRICS → SISOB "Knowledge Sharing" (societal impact)

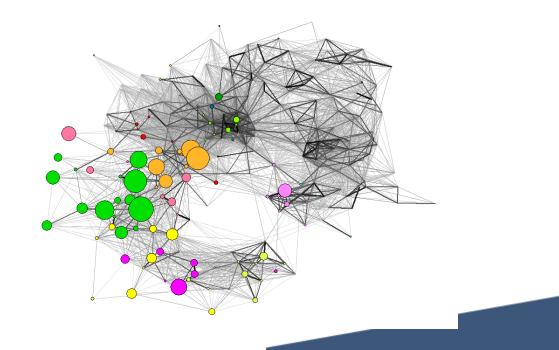



# Direct scientometric approach

- Problems with direct approaches:
  - Narrow operationalization of impact (only direct relations)
  - Use of scientific knowledge is not a priori imact: criticism of patent citation analysis (role of citations is not knowledge utilization, economic value is not attributed to patenting, tc)
  - Data is sporadic (direct references to scholarly venues, e.g. press releases) and noisy (ALTMETRICS, on-line venues)
  - Further step: reconceptualizing the measurement of broad impact...



### Towards structural approaches


 SISOB and societal impact, "P-map", "S-map" algorithm: Contrasting the scientific and social "relevance" of research subjects (based on the work of Leydesdorff)





# Structural approach: S&T mapping

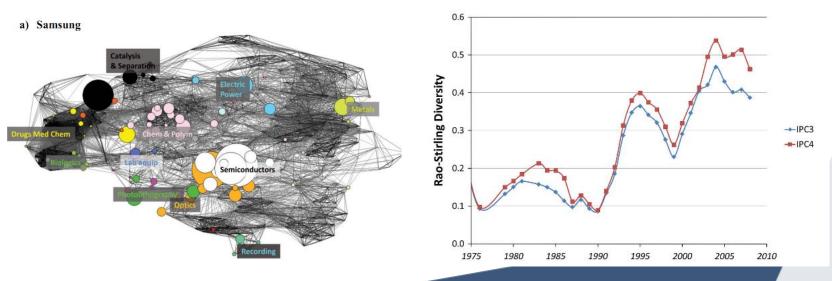
- Mapping and measuring the socio-cognitive organization, processes and dynamics in science by analyzing various dimensions of knowledge flow
- Broad impact can be identified, even quantified
- Example: IDR (interdisciplinarity research) and its applications: The overlay technique (Rafols—Leydesdorff)





# Structural approach: S&T mapping

- Measuring multi- and interdisciplinarity (IDR) upon this model: the Stirling index
- Novelty: Three structural features accounted for:
  - Number of SCs ("variety")
  - Distribution of pubs over SCs ("balance")


 Table 1 Typology of the Stirling index in measuring research diversity

|   | Formula<br>(versions of the<br>generalized Stirling<br>index) | $d_{ij}$                                                  | Underlying science map<br>(level of aggregation)                                                                                                          | Measuring diversity<br>of                                                                                        |
|---|---------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1 | $\sum_{ij(i\neq j)} d_{ij} p_i p_j$                           | $1 - s_{ij}$ , where<br>sij=cos(i,j)                      | Similarity network of (1)<br>journals (2) ISI Subject<br>Categories (based on the cited<br>and citing dimension)<br>Rafols, Meyer, Porter,<br>Leydesdorff | <ol> <li>(1) journals,</li> <li>(2) work of<br/>researchers,</li> <li>(3) output of<br/>organizations</li> </ol> |
| 2 | $\sum_{ij(i\neq j)} d_{ij}$                                   | g <sub>ij</sub><br>shortest path from i<br>to j (# edges) | Similarity network of papers<br>(based on bibliographic<br>coupling)<br>Rafols, Meyer                                                                     | particular research<br>area                                                                                      |



# Structural approach: S&T mapping

- Patent overlay mapping (basemap: global proximity network of technology classes, based on aggregate patent citations)
- Benchmarking firms (Rotolo et al. 2014)
- Measuring trends of diversification/specialization in a technological market
- Evaluation may be a result of such a mapping of output contrasted with policy goals for funding schemes





# Structural approach: S&T mapping

- Proposed uses to detect economic/outward impact (under elaboration):
  - Distance within scientific impact profile in terms of applied/applicationoriented and basic research fields (shift toward markets)
  - Funding information (especially for FP outputs): distance within scientific profile in terms of funding agencies (competitiveness of science)



### Conclusion

- Broad impact measurement is not necesserily different from measuring scientific impact (i.e. citation analysis)
- Structural methods of citation analysis reveal broad impact outside the realm of science
- Large-scale data is available (not only case study fashion)
- A single value measurement should be replaced by structural insights in scientometrics
- Thank you for your attention!