Same Data, Different Results Comparing Topic Extraction Solutions

Theresa Velden University of Michigan, School of Information (now: ZTG, TU Berlin)

Workshop on Identification, location and temporal evolution of topics Budapest, 29/30 August 2016, Hungarian Academy of the Sciences

Topic Extraction Challenge (Beta Version)

- How to group publications algorithmically into topics?
- Method: Collaboration of several scientometric groups
- Data set: metadata of ~ 111.000 publications from 59 journals in astronomy and astrophysics 2003-2010 (Web of Science) -> AstroData

Kevin Boyack (SciTech Strategies) · Nees van Eck (CWTS Leiden)· Wolfgang Glänzel & Bart Thijs (ECOOM) · Jochen Gläser (TU Berlin) · Frank Havemann & Michael Heinz (HU Berlin) · Rob Koopman & Shenghui Wang (OCLC Research), Andrea Scharnhorst (DANS-KNAW), Theresa Velden (UMSI)

Same Data, Different Results *Problem Statement*

- Need for 'benchmarking' of topic extraction approaches
 - Often developed and fine-tuned in-house with lack of replication
 - Usually data set not available for replication
 - Origin and scale of differences in results unclear
- Lack of ground truth
 - Depending on perspective more than one valid thematic structure can be constructed
 - Topical structures are reconstructed for specific purposes, so if at all, best method for a given purpose

 \rightarrow Aim: Instead of finding best solution, aim at uncovering how results differ and how those differences relate to approaches

Secondary aim: Developing methods for comparison

Topic Extraction Workflow & Sources of Variance

Label (short)	Coverage articles (%)	Data Model	Clustering	Parameters	$\begin{array}{c} \textbf{Results} \\ \# \text{ of} \\ \text{topics} \end{array}$
CWTS -C5 (c)	101, 828 (91.23%)	direct citation giant component ²	Smart Local Moving Algorithm (SLMA)	resolution min. cluster size	22
UMSI0 (u)	101, 831 (91.23%)	direct citation giant component	Infomap (undirected)	random seed	22
OCLC- Louvain (ol)	C- 111,616 semantic matr ain 100%		Louvain (python library networkX)	word occurrence thresh. stopword list K most similar articles similarity value thresh.	32
OCLC- 31 (ok)	111,616 (100%)	semantic matrix	k-means (python library sklearn.cluster. MiniBatchKMeans)	word occurrence thresh. stopword list number of clusters	31
ECOOM -BC13 (eb)	108,512 (97.22%)	bibliographic coupling	Louvain (pajek)	references < 11 years if indexed in TR product resolution link strength threshold	13
ECOOM -HY11 (eh)	109,376 (97.99%)	bibliographic & lexical coupling (NLP)	Louvain (pajek)	resolution link strength thresh. weight bc vs. text	11
STS-RG (sr)	107,304 (96.14%)	direct citation incl. non-source items cited at least twice	projection onto global science map (1996-2012) clustered by SLMA	resolution min. cluster size	555
HU-DC (hd)	101,762 (91,17%)	direct citation giant component	Memetic (random evolution + deterministic search)	seeds resolution population size other evolution param.	111 over- lapping

Realized Solutions

DATA MODEL

VLGORITHM	Direct Citation		Bibliographic Coupling	Hybrid (bc & terms/NLP)	Semantic matrix	Projection onto Global Direct Citation Map
	Infomap	u				
DN C	SLMA	с				sr
CLUSTERI	Memetic	hd				
	Louvain		eb	eh	ol	
	K-means				ok	

sr: Kevin Boyack (SciTech Strategies)
c: Nees van Eck, Ludo Waltman (CWTS Leiden)
eb, en: Wolfgang Glänzel & Bart Thijs (ECOOM)
hd: Jochen Gläser (TU Berlin), Frank Havemann & Michael Heinz (HU Berlin)
ol, ok: Rob Koopman & Shenghui Wang (OCLC Research)
u: Theresa Velden, Shiyang Yang, Carl Lagoze (UMSI)

Labeling approaches

- Cluster-level labels (Word & Thesaurus based)
 - Mutual Information based score (Boyack, special issue)
 - Labels: thesaurus terms (Unified Astronomy Thesaurus (UAT, <u>http://astrothesaurus.org</u>) or words extracted from titles and abstracts
- Assigning clusters to domains (Journal Signature)
 - Journals in a cluster ranked by a score that combines popularity and idiosyncrasy (Velden et al, special issue)
 - Reveals sub-disciplinary groupings
 - Labels for groupings created using subject knowledge

Grouping of solutions based on Similarity Metric (NMI)

Topic Affinity Networks

Specific Pairwise Comparisons Dimensions

- 1. Internal versus external perspective
- 2. Semantic versus citation based
- 3. Local versus global clustering

Construction of 'external' perspective: Projection of AstroData onto Global Science Map

Global Map (Scopus 1996-2012)

sr (Astro Data Set, WoS 2003-2010)

Hybrid (bibliographic coupling + NLP) versus bibliographic coupling

Observation:

Semantic similarities lead to different aggregations of documents and lead to distinctively different topic sizes and changes in topology of affinity network (e.g. 'extrasolar planets', 'plasma')

Local clustering versus Global cluster (hd, memetic) (c, SLMA)

Topics identified in Gravitation & Cosmology (Lexical Fingerprint Analysis)

Observation:

- Local clustering delivers topics very similar to the global clustering approach
- Additional topics are close and smaller variants of detected topics

Local clusteringversusGlobal clustering(hd, memetic)(c, SLMA)

Topics identified in Astroparticle Physics (Lexical Fingerprint Analysis)

Conclusions

- Significant differences depending on approach
- Differences can be tentatively explained by features of data model and clustering algorithm
- Open challenges:
 - Identifying best approach for a given purpose
 - Validate a topic extraction solution in context of purpose